
878 IEBB TRANSACTIONSON MICROWAVETHRORYANO TECHNIQUES,VOL. MrT-28, NO. 8, AUGUST 1980

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

N. J. Taylor, “Gyrotron amplifiers and oscillators for high power

at high Frequency,” in Proc. IEEE Int. Conj. Plasma Science
(Montreal, Canada, June 1979), p. 11.

J. L. Hirshfield and V. L. Granatstein, “The electron cyclotron

maser-An historical survey: IEEE Trans. Microwace Theory
Tech., vol. MTT-25, pp. 522-527, 1977.

J. L. Seftor, V. L. Granatsteitt, K. R. Chu, P. Sprangle, and M.

Read, “The electron cyclotron maser as a high power traveling
wave amplifier of millimeter waves,” IEEE J, Quantum Electron.,
vol. QE-15, pp. 848–853, Sept. 1979.

F. A. Kovalev and A. F. Kuritt, “Cyclotron-Resonance maser

with a Fabry-Perot cavity: Rad. Eng. Electronic Phys., vol. 15, no.
10, pp. 1868–1873, 1970.
V. V. Alikaev, G. A. Bobrovskii, V. I. Pozyak, K. A. Razumova, V.
V. Sarmikov, Yu. A. Sokolov, and A. A. Shmarin, “ECR plasma
heating in TM-3. Tokamak in magnetic fields up to 25 kOe~

Plazmy, vol. 2, pp. 390-395, 1976 (Sov. J. Plasma Phys., vol. 2, pp.
212-215, 1977).
N. I. Zaystev, T. B. Pankrotova, M. I. Petefin, and V. A. Flyagiq
“Millimeter and submillimeter waveband gyrotrons~ Radio Eng.

Electron., P~s., vol. 19, pp. 103-107, May 1974.

L Fidone, G. Granata, and R. L. Meyer, “Wave absorption near

the electron cyclotron frequency: Phys. FIuiak, vol. 21, pp.

645-652, 1978.
0. Eldridge, W. Namkung, and A. C. Engtan~ “Eleetron
cyclotron heating in Tokamaks~ ISX-B ORNL Teeh. Memo. TM
6052, NOV. 1977.
E. Ott, B. Hui, and K. R. Chu, “Theory of electron cyclotron
resonanee heating of Tokamak plasmas,” Phys. Fluids, to be pub-
lished.

B. Hui, E. Ott, K. R. Chu, and T. Antonson, “Theory of second
harmonic cyclotron resonance heating of a Tokarnak plasma:

Phys. Fluio!r, to be published.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. R. Chu, “Theory of electron cyclotron maser interaction in a

cavity at the harmonic frequencies,” P&. Fluia!r, vol. 21, pp.
2354-2364, 1978.
P. Sprangle and A. T. Drobo~ “The linear and self-consistent

nonlinear theory of the electron cyclotron maser instability: IEEE
Trans. A4icrowaoe Theo~ Tech., vol. MTT-25, pp. 528-544, 1977.

J. L. Seftor, A. T. Drobot, and K. R. Chu, “An investigation of a
magnetron injection gun suitable for use in cyclotron resonance

masers; Naval Res. Lab. Memo Rep. 3697, to be pubfishcd.
D. V. Kisel, G. S. Korablev, B. G. Navel’Yev, M. I. Petelin, and
Sh. Ye. Tsimring, “An experimental study of a ~rotron, operating

at the second harmonic of the cyclotron frequency, with optimized
distribution of the high-frequency fieldfl Radio Erzg. Electron.
Phys., vol. 19, no. 4, pp. 95-100, 1974.
S. N. Vlasov, G. M. ZhMin, I. M. Orlova, M. I. Petelin, and G. G.
Rogacheva, “Irregular waveguides as open resonators; Radiophys.
Quantum EIectron., vol. 12, no. 8, pp. 972-978. Aug. 1969,

E. M. Demidovich, I. S. Kovalev, A. A. Kurayev, and F. G.
Schevchenko, “Efficiency-optimized cascaded circuits utitimg the

cyclotron-resonance: Radio Eng, Electron. Phys,, vol. 18, no, 10,

pp. 1542-1549, 1973.

S. V. Kolosov and A. A. Kurayev, “Comparative analysis of the
interaction at the first and second harmonics of the cyclotron
frequeney in gyroresonance devices: Radio Eng, Electron. Phys.,

vol. 19, no. 10, pp. 65–73, 1974.
Yu. V. Bykov and A. L. Gol’denburg, “Influence of resonator
profite on the maximum power of a cyclotron-resonance maserfl

Radiophys, Quantum Electron., vol. 18, pp. 791–792, 1975.

V. L. Bratman, M. A. Moiscev, M. I. Petelin, and R, E, Errn,
“Theory of gyrotrons with a non-fixed structure of the high

frequency field,” Rodiophys. Quantum Electron., vol. 16, pp.
474-480, 1973.

Hitachi Dinshi, LTD, Model R6414.

The Variational Principle for Non-Self-Adjoint
Electromagnetic Problems

CHUN HSIUNG CHEN AND CHUEN-DER LIEN

Abstract-A systematic and mtnitive pmeedure is proposed to derive

tbe varfationaf (or stationary) principle for non-self-adjoint electrarnag-

netic prnblenw with various bnundary conditions. Severaf physicaf interpre-

tations of this principle in terms of generalized reactio% time-average

stored energy, and reactive Puwe% respectively, are discussed in detafl.

This generaf variational pficiple which makes the generalized readorrs a

stadonary value is actnafly an extension of the least action principle in

physics, The applications of the principle to establish the variational

expressions for a waveguide, a cavity resonator, and a Iussy one-dfrnen-

sionat inhumageneoos slab ere presented.

I. INTRODUCTION

A LMOST ALL physical problems can be formulated

mathematically in terms of differential equations,
integral equations, or variational equations [1], [2]. Before
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The authors are with the Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan, Republic of China.

the advent of computer, the applicability of the varia-

tional formulation is somewhat limited, because its soht-

tion eventually has to go back to that of solving the

differential equations. But in recent years, the variational

formulation has received much attention for three rea-

sons. The primary reason is that we have computers

capable of solving the variational equations directly and

practically, using the direct methods [2], [3], such as Ritz

method and finite-element method. The second reason is

that the variational formulation itself also permits a physi-

cal interpretation, thus, it may supply another picture to a

physical problem. The third reason is that the variational

formulation can be used not only for computing the field

but also for establishing the stationary formula of a quan-

tity such as the eigenvalue. Of course the variational

formulation is not suitable in discussing the problem for

which the functional does not exist [4]. Actually, only

0018-9480/80/0800-0878$00.75 @1980 IEEE
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when the functional exists can the variational formulation mathematical problem, ~ is the field (unknown function)

have physical and mathematical significance. to be determined, and s is a given (known) source func-
In physics, both differential formulation (Newton’s law) tion.

and variational formulation (the principle of least action) A method of solving the original non-self-adjoint prob-
have been utilized extensively in studying a mechanical lem (1) is to introduce an auxiliary problem, the adjoint

system. But the variatiomd formulation of an electromag- problem [4]–[6], [24], [25] as follows:
netic system is still not well-established in comparison La~=~a (2)
with the differential formulation (Maxwell’s equations) of

the same problem. With a few exceptions [4]–[7], most where L” is the adjoint operator of L, fl is another

investigations on the variational formulation are mainly unknown function (the adjoint field) to be determined,

concerned with the self-adjoint electromagnetic problems. ands a is another known source function.

The purpose of this paper is to establish a general varia- Both real- and complex-type inner products [25] will be

tional principle (formulation) for dealing with a non-self- considered in this study. The latter is accepted conven-

adjoint electromagnetic system and then to present a tionally by many authors and is easily interpreted as the

physical interpretation of this novel principle. complex power physically, however, the former is more

In the field of electromagnetism, some derivations and convenient in mathematical manipulation [26]. Either

applications of the variational formulation have been re- real- or complex-type inner product of two vectors u and

ported recently [8]-[23]. Rumsey [8] and Barrington [9] w is defined as a scalar (u, w ) such that

have created the reaction concept for deriving the (U,w)=(w,uy

stationary expressions in an isotropic medium. Konrad (U,u, -1-U,U*, w) =uf<u~, w) +u$<u~, w) (3a)
[10] has investigated the variational expressions in an
anisotropic medium, while Morishita and Kumagai [1 1], where U1,z.+ are vectors and Ul, Uz are scalars. For the

[12] have studied the same problem, using the principle of
complex-type inner product the superscript p should be

least action. There are many authors who have derived the
interpreted as “complex conjugate*” so that

variational expressions for each specific problem

[13] -[23]. But all these investigations are mainly con-

cerned with the self-adjoint problems (with respect to

either real- or complex-type inner product). Although a

few authors [4], [5], [24] have proposed a scalar theory for

handling some specific non-self-adjoint problems, the the-

ory is still not powerful enough in dealing with the general

problems for a vector field. While the variational expres-

sions for a non-self-adjoint vector field have been ob-

tained by means of “transpose operator and field” [7], it is

still worthwhile to have an intuitive derivation and physi-

cal insight of these expressions on the other hand. More-

over, only boundary conditions of Dirichlet and/or Neu-

mann types are considered by the previous investigations.

There is still little information concerning more general

types of boundary conditions.

In this paper, a systematic and intuitive procedure is

suggested to derive the variational expressions for a non-

self-adjoint electromagnetic system. The generalized reac-

tion concept is introduced to interpret the general varia-

tional principle for this electromagnetic system. The prin-

ciple is then applied to the problems of establishing the

variational expressions for a waveguide, a cavity resona-

tor, and a lossy one-dimensional inhomogeneous slab.

II. VARIATIONAL FORMULATION OF A

NON-SELF-ADJOINT PROBLEM

The variational solution of a non-self-adjoint problem

Lf = S (1)

will be summarized in this section. Although only the

electromagnetic field problem is considered in this study,

the theory is, in general, applicable to any non-self-adjoint

problem in physics and mathematics. In (l), L is a non=

self-adjoint linear operator for describing a physical or

# = U* i=l,2

(U,w)=(:,uy’=(w, u)’ (3b)

while for the real-type inner product p should represent

“no operation” and should be removed and interpreted as

IJ: = Oi, i=l,2

(U,w)=(w, uy=(w,u). (3C)

The symbol p will always have the above interpretation

throughout this study.

We now conduct a systematic and intuitive derivation

of the variational formulation for solving both original

and adjoint problems, equations (1) and (2), simulta-

neously. The idea is to express the left-hand side of the

equation

(6P, Lf-s)+(L~-s”, 8f)=0 (4)

as the first variation N of some functional Z [2], where tlf

and 8P are the variations off and ~, respectively. Then it

can be shown that the problem of solving f and Y simulta-

neously from (1) and (2) is completely equivalent to that

of determining the stationary functions (both f and Y)

from the following variational equation:

M(f, f“)=o

Z(f, f“) =(fl, Lf) – <s”, f ) –(P, S). (5)

Note that for the problems defined by differential oper-

ators L and La with their boundary conditions B(f)= O

and B a(~)= O regarded as essential ones, the stationary
functions J and F of (5) should also be subject to the

constraints B(f) = O and B “(Y)= O, respectively. How-

ever, if these boundary conditions are regarded as natural

ones, then some modifications should be made on (4) and

(5), as demonstrated in Section III, with the stationary

functions ~ and f“ subject .-to. no constraints on the

boundary.
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Note also that with the symbol (,) defined by (3), the

variational formulations for real- and complex-type inner

products can both be written in the same form as indi-

cated by (5). The expression in (5) is identical to that of

the stationary principle [4], [24] and that of another de-

rivation [5]. The expression (5), of course, includes that

adopted in the previous investigation of the self-adjoint

problem [27].

It seems that both j (the desired field) and Y (the

adjoint or auxiliary field) have to be solved simulta-

neously in the variational problem (5). However, the pro-

cess of determining both f and Y can actually be decou-

pled, as explained later, when Rayleigl-Ritz or finite

element method is employed in the solution.

Let us express the solution in the form

f= $ W.
~=1

F. $ q’+; (6)
~=1

where *H and @: are known functions, and C. and C; are

constants to be determined. Note that both +. and +: may

or may not form the bases of the domains of L and La,

respectively, however they should be linearly independent

and should form the complete sets as N approaches infin-

ity, By substituting (6) into (5) or (4) and adjusting C. and

C: such that 8Z(f,~) = O, one obtains two decoupled

systems as follows:

~~1 (4%3 L4.)C. =(4%, s)

; (%, L“4;)Ct=(%, s“), m=l,2,. . . ,N. (7)
~=1

The positive integer N in (6) and (7) may be finite or

infinite if an approximate or exact solution is to be

determined. The fact that C. and C; are decoupled in (7)

has greatly simplified the process of determining the

stationary functions f and Y from (5).

The discrete systems (7) from the Ritz method are

identical, in form, to those from the moment (or Pet-

rov–Galerkin’s) method [26] of simultaneously solving the

original and adjoint problems (1) and (2). Since there is a

basic difference or mathematical distinction between these

two methods [4], the above statement is meaningful only

when both methods can make sense, If the functions +.
and ~~a are selected from the eigenfunctions of L and La,

respectively, then the systems (7) will reduce to the con-

ventional ones derived from the method of eigenfunction

expansion [25]. If F in (6) is expanded into a series of +.

instead of o:, then the resultant systems obtained will be

identical to those from the Galerkin’s (or Bubnov–Galer-

kin’s) method.

The introduction of the auxiliary problem (2) for sup-

plementing the original problem (1) has an interesting

physical interpretation as follows:

(Y, S)=(fl, Lf)=(L~,f)=(sa,f). (8)

This is the generalized reciprocity theorem which states

that the generalized reaction of the adjoint field ~ on the

sources of the original problem is identical to that of the

original field f on the source s a of the adjoint problem.

The term (~, s}, for example, may be interpreted as a

generalized reaction since it can be reduced to the conven-

tional reaction [8] if the real-type inner product is em-

ployed.

The general reciprocity theorem (8), in the case of a

self-adjoint problem using the real-type inner product, has

an important result as follows. By setting f ‘fl, s = s1,

P= f2, s“ = S2, one then has the conventional reciprocity

theorem [28] of relating the reactions between two diffe-

rent problems: (fl, S1) and (f2, S2), i.e., (f2, S1) = (fl, s2).

III. VARIATIONAL PRINCIPLE FOR

ELECTROMAGNETIC SYSTEM

The variational principle for dealing with electromag-

netic field problems will be investigated in this section.

This study is mainly concerned with the solution of the

non-self-adjoint electromagnetic problem (the original

problem) described by the equations

–vx E=ju~.E+fi

VXE=ju~.~+~, in V

Z(E,E)=O, on S (9)

where V is a closed region bounded by the closed surface

S, Fig. 1. In (9), ~ and E are the electric and magnetic

fields to be determined, ~ and @ are the known source

distributio~s (eleStric and magnetic current densities)

within V, c and ~ are the perrnittivity and permeability

tensors (dyadics) of the medium contained in V, and

~(~, ~) = O is the required boundary condition on the

surface S. The anisotropic medium_in V Way be 10SSYand

inhomogeneous, thus, the tensors ~ and ~ are in general

complex quantities and functions of the position. Only

time-harmonic variation of the form #“d’ will be discussed

in this study.

As before, an auxiliary adjoint problem

–VX@=ju~a-P+@

VXF=ju7a.F+F, in V

E@’,P)=o, on S (lo)

is introduced to supplement the original problem (9). In

(LO), @ and ~ are the unknown adjoint field>fi and
Ma are known source distributions, and ~a(~, Ha)= O is

the adjoint boundary condition. Note that the condition

@(@, %)= O in (10) should be ch~sen according to

~(~, ~) = O In (9), an_d the dyadics c“ and ~ should

be equal to (;~~ and (~TY’, respectively, in order to make

(10) the adjoint of (9). The symbol T denotes “transpose”

and p again denotes no operation or complex conjugate*

as discussed in (3).

The inner prod~ct, for studying an electromagnetic

system, of vectors U and ~ is defined as

<u, w)= J G’. W(W. (11)
v
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m’s
I fields (Z, R ) \

( medium (?,,77) I

Fig. 1. Geometry of non-self-adjoint electromagnetic problem (original
problem).

Two kinds of boundary conditions are discussed, i.e.,

iif(E=)=fix F-y”=o, on S (12)

and

(13)

In (12) and (13), ~.=0 and ~=0, i= 1, 2, are the

boundary conditions associated with the original and

adjoint problems (9) and (10), respectively, ii is the unit

outward normal vector to the surfac~ S_(Fig. 1), y, y a, /3,
--—

~ are given constant vectors, and a, ~ are given con-

stant dyadics. To make the problem (10) the adjoint

of (9), ~ should also be chosen such that ~ = (~~~.——
Physically, the vectors B, j3a and y, y may-be interpre-

- -a

ted as ~lectric- and magnetic-surface currents, and the

dyadic; as the permittivity of an infinitesimally thin layer

over the surface S. In the expressions for the variational

principles given by (19)–(21), (22)-(24), and those for the

generalized~eactions given by (25), these constants ~, ~,
— -a
Y, Y , and a have actually served as sheets of additional
sources and sheet of extra anisotropic material at the

boundary S.

The variational equivalent of (9) and (10) may be writ-———
ten in terms of (~, ~), (~,@), or (~, H, E“, Ha) and is

named E-, H-, or E, H- formulation, respectively.

A, E-Formulation

First consider the variational formulation in terms of ~

and ~. To this end, the unknowns ~ and @ in the

original and adjoint problems (9) and (10) are considered

as functions of ~ and ~, respectively, i.e.,

H(E)= – ~-1. (V XE+ii7)/ju

E=(m)= – ;;’.(V xF’+m)/j@. (14)

Then ~ and ~ in (9) and (10) may be eliminated to
obtain the wave equations as follows:

=jd”a+ V x(~”-’.~), in V

F@Q7@=))=o, on S. (16)

Here we have the electric field ~ to be determined from

the original problem (15) and the adjoint electric field @

to be determined from the adjoint problem (16).

To absorb the boundary conditions into the variational

formulation as well as to simplify the derivation, a symbol

A(S) is introduced for converting volume integral into

surface integral and vice versa,

@W)dV=@)ds
v s

A(S)* =A(S). (17)

In (17), F is a scalar function of the position ~ so it may

be replaced by any component of a vector or a tensor.

To seek for the variational formulation of (15) and (16)

with boundary conditions (13), we now start from the

equation of the form

(8*, L~-jd-- V X( p‘-’-q)

——— _
+(8=, DB(E, H(~))A(s))

+-(Da~a(~, H“(~”))A(S), ~~) = O (18)

and try to reduce the left-hand side of (18) into the first

variation 81 of some functional 1. Note that we have also

included the boundary conditions ~= ~. = O and ~ = ~;

= O, (13), as natural ones into the derivation. The con-

stants D and D” are chosen (D= D a= jo) so that the

dimension in (18) can be matched and the left-hand side

of (18) can be expressed as the desired form M.

Note that (18) can also be applied to the prob~em>(15)

and (16) with the boundary conditions (12), B = B1 = O

and & = & = O, regarded as essential ones. In this case,

the last two terms in the left-hand side of (18) are then

dropped automatically,

For the problems (~) and (16) with ~he same boundary

conditions (12), ~= B1 = O and & = B: = O, regarded as

natural ones, one should start from (18) with 8E and d@

in the surface integral terms replaced by d(j~) and

a(j%), and D = Da = – U.

By a straightforward manipulation it can be shown,

from (18), that the mathematical equivalent of solving (15)

and (16) is the variational problem as follows:
——

61e(E,E”)=0 (19)
——

where the functional Z=(E, E“) takes the form

(15)
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——
Z;,E(E, E“) = –(J’(jF’(m), ~ jIF(E))

+uz(~, ~ .~) – (~, jd-) – (jd”a, ~) (20b)

for the conditions (12), or the form

l;2(E, m) =
——

–u’(j3(&), ~ jH(E ))

+ti’(~, (~ + ~A(S)).~)

- (@, j~(~+ ~A(S)))

- (j~(~+ PA(S)), ~) (21)

for the conditio~s (13). In (20) and (21), H(E) is actually
——

a function of E, %(~) a function of =, as given by

(14), and A(S) is the symbol defined by (17).

Precisely, the variational principle states that the prob-

lem of solving ~ and ~ simultaneously from (15) and

(16) with (12) (or (13)) is completely equivalent to that of

determining the stationary functions E and @ from the

variational problem: 81’ = O, 1’= I;* (or l&), with both ~

and & unrestricted on the boundary surface S. In this

case the conditions (12) (or (13)) are just the natural

boundary conditions of the variational problem (19).

Alternatively, we may sol~e the variational problem (19)

with the trial functions E and @ subject to the same

constraints (12) El= ~~ = O. With these constraints, the

functional 1~1 then reduces to 1~1~ and the same condi-

tions (12) are now the essential boundary conditions of

the variational problem.

B. H-Formulation

The formulas for H-formulation, which may be ob-

tained from those for E-formu~aQon_by m~ans of duality— — — — — — -— —
transformation: EjjH, jHjE, c-p, p-c, – jJ-+M, M

a –j~, etc., (or that given by Barrington [9]) are omitted

in this investigation.

C. E, H-Formulation

Instead of treating ~ as a function of ~ and @ as a

function of@ as did in Section III-A, we may also regard.—— _
E, H, E“, H“ as the unrelated unknown fields to be de-

termined from (9) and (10). In this manner, we then have

the equiv~le~t ~ariitional formulation of (9) and (10) in

terms of E, H, E“, Ha
———

Ne’h(E, H, Ea,~)=O (22)

where the functional Ie’h(~, ~, ~, ~) is

———
Z;:(E, H, E”, ~) = 1$/’’(~,~,~,~)

- (jti~, (ii x ~- ~)A(S))

-<(fix E- ~“)A(S), ju~)
——— —

I~l~(E, H, E“, Ha)= to’{j%, ~j%) -!-U={@, ~.~)

+ (ja~, V X ~+ G)

+(V X ~+ ~,ju~)

– (@, jd-) – (jti-a, ~) (23)

for the conditions (12), or
——— —

I~~(E,H, E”, H”) =a’(j&, ~ j~)

+Q2<R,(: + 7A(s)).E)

+ (jaP, V X ~+ ~)

+( VX$+3,ja~)

-(fi,jti(~+ ~A(S)))

- (ju(~ + ~A(S)),~) (24)

for the conditions (13).

The variational principle again states that the solutions

(~,~) of (9) and (~,~) of (10) with (12) (or (13)) are

also the solutions (E, H, ~, ~) of the variational prob-

le~: 81e>h= O, I’>h = ZJ~ (or Z~~) with the trial functions——
(E, H, E“, ~) completely arbitrary on the boundary S,

and vice versa. This is the case of regarding (12) (or (13))

as the natural boundary conditions. For the case of re-

garding the same conditions (12) as the essential ones, the

variational problem should be solved from: 81e’h = O,Ze’h———
= Z~~~ with the trial functions (E, H, E“, ~) subject to

the constraints (12).

Note that by regarding ~ and ~ in (23) and (24) as

functions of ~ and ~, respectively, as given by (14), one

may show that the functional in (23) and (24) for E, H-

formulation can be reduced to those in (20) and (21) for

E-formulation, respectively. The reduction of the un-——— ——
knowns, from (E, H, E“, %) to (E, E“), does not raise the

order of the derivatives in the resultant expressions, since

(20), (21) and (23), (24) all contain the derivatives of at

most order one. In this sense, the formulas of E-formula-

tion are more attractive than those of E, H-formulation.

Note also that with (j~) as well as (j=) treated as a

single quantity in the derivation, the variational formula-

tions for real- and complex-type inner products can both

be expressed in the same form as given by (19)–(21) and

(22)-(24).

IV. THE GENERALIZED REACTION CONCEPT

We now present physical interpretation of the general

variational principle described by (1 9)–(21) and (22)–(24).

For this purpose, we define the “generalized reactions” as

(P,s) =j{(j~, ~+~A(S)) -<~, j[~+~A(S)]))

<.a,Y} =j{(~a+ ~A(s),j~} -{j[fi+ PA(s)], ~}]

<Y, s(j)) =j{(j@, ~(~,~) + ~,(~,~)A(S))

-(@,j[~(~~)+~(~~)A(S)]))

(Sa(fl),j) =j{(~a(~, ~) + ~~(@, ~)A(S), j~)

-(j[fi(~a,m)+p( za,@)A(S)], ~)). (25)

Then it can be shown that the functional I“(E, E“) in
.—

(20), (21) and ~e>h(~, ~, =, ~) in (23), (24) can be re-

written in terms of these generalized reactions as follows:

l(j, fl) =ja[ (Y, s(j)) – (s”, j”) – (P, s) ]. (26)
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Note that (26) is actually an extension of (5) if one defines

a field depe~d~nt source such that s(j)= L~ in (5).

In (25), (l, M) and (~, ~) are the true sources of the

original and_a~oint proble~s, (9) and (10), respectively.

The fields (E, H) and (@, Ha) are the trial fields used in

the original and adjoint systems (9) and (10). The field-de-

pendent sources

J(-F,ii)= V XIi-jaY.i7
—.—
M(E,H)= – V X E–ju~.i7 (27)

are the ones to support the trial fields (~, ~), and

@(@,R=)= – v x m–j(d~”.~ (28)

are those to support the trial fields (~~, ~).——
The electric surface currents /3, /?”, P(E, R), ~(~ ~)——> —

a~d ma~netic surface currents ~,, ~;, M,(E, H),

M~(@, Ha) in (25) are chosen according to the problems.

For the problem with the boundary conditions El= ~~ =

O, (12), the currents are chosen such that
———

p=jjU=p(E,H)=fjZ( @,@)=O

—— —
M,(E,H)=fix~

@(J9,F) = ii x @ (29)

and~, =fi X~, %~=2X@or %,=~, ~,a=~a depend-

ing on whether the conditions (12) are regarded as essen-

tial or natural ones. For the problem with the natural

boundary conditions ~z = ~~ = O, (13), the currents should

be chosen such that

and ~,~ are defined by (13).

The generalized reactions in (26) should be calculated

from (25), (27)–(30) with ~, ~,fi, ~ denoting the true

sources and ~, R, ~, ~ denoting the trial fields.

The expressions in (25)–(30) are mainly written for the——
functional le’~(~, H, E=, ~) of E, H-formulation. The

same expressions may be applied to the functional

I’(E, E) of E-formulation if one regards ~ as a function

of ~ and ~ as a function of ~ as given by (14). Then———
M(E, H) and ~(~>~) automatically reduce to the

true sources ~ and Ma, respectively. Note that (25) and

(26) are invariant under duality transformation, thus, they

are also applicable to the expressions for H-formulation.

The term (~, s ) maybe interpreted as the “generalized

reaction” of (~~, ~), the trial fields in the adjoint system

(10), on (~+ 8A(S), ~+ ~~A(S)), the sources of the

original problem (9). The term (~, s(j) ) is the reaction

o~ the trial fields (~, ~) on the sources (~(~, ~) + ~(~,——— ———
H)A(S), A4(E, H) + A4~(E, H)A(S)) to support the trial

fields (~, ~), Similar interpretations may be applied to

(s”, ~) and (s”(f”), j).

Note that we have included surface source: @rents)——
P9&?”””7M, @9””” and surface materials a, % in the

definition of the reactions. The generalized reactions (25)

reduce to the conventional ones proposed by Rumsey [8]

when the real-type inner product is adopted in formula-=.
tion and the surface quantities a, a=, ~, ~,s s., fi~,

u:,””” are removed from the above equations.

The general variational principle described by (22)-(24)

(or (19)-(21)) now has a physical interpretation as

follows: the true solutions (fields) of the original and

adjoint problems (9) and (10) (or (15) and (16)) are just

the ones that give the sum of the generalized reactions in

(26) a stationary value.

The trial fields (~, ~) and (@,=) used in the original

and adjoint systems possess the following symmetric prop-

erty:

(fl, s(j)) =(s”(p),j). (31)

In words, the reaction of the trial fields (~, ~) (in the

adjoint system) on the equivalent sources to produce the

trial fields (~, @ (in the original system) is always equal

to that of (E, ~) on the equivalent sources to produce

(E, m).

Note that for the problems (9) and (10) with the

boundary conditions (12) (or (13)), the reaction (Y, s(j)),

is equal to (Y, S)f and (s”(Y), j>~ is equal to (s”, j)~

whenever the trial fields are equal to the true fields. The

subscript t in ( , )t indicates that the true fields and

sources of (9) and (10) are utilized in the expressions for

the reactions. One consequence is that the true fields and

sources of the original and adjoint problems, (9) and (10),

should be connected by the relation

(y, S)* = (Sa, f ),. (32)

This is the generalized reciprocity theorem [29] which

states that the reaction of the true fields of the adjoint

system (10) on the true sources of the original system (9)

should be equal to that of the true fields of (9) on the true

sources of (10). Another consequence is that the func-

tional 1 in (26) has a stationary value equal to –jti(fl, s ),

(= –j~<sa, ~),).

It remains to consider the important special case of a

self-adjoint problem such that

(:”, ?,=”) =(: ; z)7>. (33)

The dyadics in (33) are then symmetric or Hermitian

depending on whether real- or complex-type inner prod-

uct is adopted. For this case, there are many choices for

the adjoint quantities. A convenient one is that

(7,@,~”,@,P,~”) =(J,M,E,H,~,~). (34)
.—— ——

Then the functional 1 in (26) can be written in terms of

self-reactions as follows:

I(f) =ja[ (f, s(~)) – (s,j) – (j, s) ]. (35)

For the self-adjoint problem discussed by the complex-

type inner product, the expressions in (20) and (21) then

automatically reduce to the ones studied by the previous

investigator [10]. In particular, the variational expression

1; ,E in (20) has an interesting physical interpretation
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when it is rewritten in the following form:

*IjlE(z)=@[ l/2<E, Z-E) – l/2< fi(E), ;-H(E))]
——

+(– Im(~, ~)) (36)

where Im means the imaginary part of a complex quan-

tity. The first and second terms in the right-hand side of

(36) may be interpreted as the time-average electric and

magnetic energy stored within the region V, and the third

term as the reactive power supplied by the electric source

Y. The variational principle for an electromagnetic system

then states that the true solution ~ of the variational

problem 81;1E = O should be the one that makes the dif-

ference in the energy, electric minus magnetic, of the

system plus the (electric) source reactive power a

stationary value. The same interpretation may be applied

to the expression in (21) if the surf~ce_qu~ntities ; and ~

are properly included in (36) (i.e., ~~~ + ;A(S) and ;~~

+ ~A(S)).

Using the complex-type inner product to describe a

self-adjoint problem it can also be shown that the self-re-

actions <j, s(O) and <s(j), j) are all imaginary, since

(j, s(f)) = (S(j),f) = - (f, s(f))”. (37)

This implies that the self-reaction such as (j,s), has no

real part. Physically, the imaginary part of (~, s )1 is just

the reactive power delivered by the true magnetic source

~+ ~fA(S) minus that delivered by the true electric

source ~+ ~A(S). These reactive powers are exactly the

stationary value of the functional 1/( –ja).

Note that the expression in (35) is actually an alterna-

tive version of that given by (36). The sum of the reactive

powers in (35) are, therefore, related to the difference of

the average stored energy plus the (electric) source reac-

tive power given by (36).

The electromagnetic variational (or stationary) principle

described by 81= O (where 1 is defined by (20), (21), (23),

(24), (26), (35), and (36)) may be considered as an exten-

sion of the principle of least action in physics. The princi-

ple now states that the true solution of a self-adjoint (or

non-self-adjoint) electromagnetic system is just the one

that makes the sum of the reactive powers in (35) or (36)

(or the sum of the generalized reactions in (26)) a

stationary value.

Another choice of the adjoint quantities for a self-

adjoint problem is worthy of further investigation. If the
self-adjoint problem is discussed by the real-type inner

product, then one may use the alternative choice of the

form
——— — ——. —.

(~ M, E> H,p,7)=(Yl,M,>E,> ~,, fl,>7,)

(fi,@,m,%,~,7a) =(~,,fi2,z2,~,, B2,Y2). (38)
——

The generalized reactions defined by (25) then automati-

cally reduce to the ones originally proposed by Rumsey

[8], [9]. The generalized reciprocity theorem (32) also

reduces to the conventional one [9]

(fz> ~1), = (Y17 ~2)f (39)

@

,/”
---z)(, \

,) \\ . “ s,

Z=Z*

Zi=zl

Fig. 2. A section of infinite uniform guide for establishing two-dimen-

for relating two

(.72,U2, & ti2) in

sional formulation.

—— _
different problems (~1, &ll, El, H,) and

the same environment.

V. REDUCTION TO TWO-DIMENSIONAL PROBLEMS

We now apply the three-dimensional variational expres-

sions in Sections HI and IV to the derivation of the

two-dimensional ones for an infinite uniform guide (Fig.

2). Although these expressions can also be obtained di-

rectly from the two-dimensional governing differential

equations, it is interesting to establish the same results

with a different approach.

Consider a section of uniform guide, from z = ZI to

z = Z2, to form a three-dimensional region (V of Fig. 1)

with the boundary S consisting of the surface S‘ plus two

cross-sectional planes S1 and S2 at z = z, and z = Z2,

respectively, as shown in Fig, 2, Note that the two-dimen-

sional problem in Fig. 2 should only include S’ as its

boundary, consequently, the starting equation (18) for this

purpose should not contain the surf ace integral terms over

S, and S2.

Let us consider the variational expressions for the cases

[E(x,y,z),@x,y, z), B(x,y,z),j@y,z)]

= [~(x,y),~(x,y), ~(x,y),~(x,y)]e-~’z (40)

[m(x,y,z),m(x,y, z),m(x,y,z),y”(x,y>z) ]

= [~(x,y),~(~,y), ~(x,y),~”(x,y)] e-~’a’. (41)

Note that only under the condition

(jka~ = -jk (42)

it is possible to get a useful expression such as (43). By

substituting (40) and (41) into (18) with the condition (42)

it is discovered that the left-hand side of (18) (i.e., the

volume integral plus the surface integral over S‘) may be

written as

(Z2-Z1)8K=0 (43)

~here K is a functional K(~(x,y), ~(x,y), @(x,y),

Ha(x,y)) independent of z.

The two-dimensional functional K is related to the

three-dimensional one 1 defined by (20), (21), (23), (24),

(26), (35), or (36) with the fields given by (40)-(42), the

boundary conditions on S’ specified by (12) or (13), and

some suitable boundary conditions, for example (12) or

(13), specified on S, and Sz. The relation is

K= dI/dz2 (44)
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i.e., the two-dimensional functional K can be obtained

from the three-dimensional one 1 by performing the in-

tegration with respect to x, y, and z to get 1 first and then

taking the derivative of 1 with respect to Z2. Actually, this

functional K can directly be obtained from 1 by simply

removing the integration with respect to z.

In conclusion, we have the two-dimensional formula-

tion for a guide

c5K=0 (45)

since (Z2 – Zl) in (43) is arbitrary.

By using the complex-type inner product to discuss a

self-adjoint problem and choosing the adjoint quantities

according to (34), it is found that the condition (42) is

fulfilled automatically. Then one can yield, from (44), the

same results investigated by the previous authors [7],

[11]-[15].

VI. APPLICATIONS OF THE VARIATIONAL PRINCIPLE
.

Examples of deriving the variational expressions for

fields computation and establishing the stationary for-

mulas for certain physical quantities, such as the eigenval-

ues, will be included to demonstrate the applications of

the variational principle.

Consider first the normal incidence propagation prob-

lem for an isotropic inhomogeneous dielectric slab [16].

From the region 1 (x< O) of homogeneous medium

(PO COS1),a uniform plane wave is normally incident upon
the region 2 (O< x < a) of inhomogeneous medium

( po,eocz(x)), and is then transmitted to the region 3 (x >a)

of homogeneous medium (~, COC3).By means of the con-

tinuity conditions for tangential electric and, magnetic

fields over the boundaries at x = O and x = a, one can

obtain the constants associated with the problem as

follows:

For computational simplicity by adopting the

inner product and choosing (34) one has, from

(46)

real-type

(21), the

variational expression for computing the electric field

E(=ylj(x))

+jk~~2(a) +jk1~2(0) –j4k1~(0). (47)

The constants to and PO are the permittivity and permea-

bility of free space; Cl, Cz(x), and C3 are the relative

permittivities of region 1, 2, and 3; and ko, k], and k3 are

the propagation constants of free space, region 1 and

region 3, respectively.

For the functional l(f,fl) in (26) (or (5)) which contains

an unknown physical parameter such as resonance

frequency, cutoff frequency, or propagation constant, the

stationary formula for that parameter may be obtained

from the equation

885

Kf,f? = mm (48)

where j,fl are the trial fields and ~,fl are the true fields of

the original and adjoint problems. Note that the func-

tional (26) for the true fields is zero, i.e.,

~(j,f)=o (49)
-—

whenever the true sources J, M, ~, P and the surface———
sources ~, ~a, M,, fi,a are all zero.

It remains to apply (48) and (49) to the problems of

establishing the stationary formulas for a cavity resonator

and a waveguide.

Consider the resonator which has a perfectly conduct-

ing wall S to enclose a region V of Hermitian medium.

The complex type inner product is adopted in formula-

tion. Then the problem is self-adjoint. The adjoint quanti-

ties are chosen according to (34). Note that the true——
sources (J, M) are zero within V so that the relation in

(49) can b~ satisfied. By considering the boundary condi-

tion, ii x E(S) = ~= O, as a natural one and using (14),

(20), (34), (48), and (49), one then has the stationary

formula for resonance frequency ~ [15] of the form

W2=
{J

Vxfi. ~-k&dV

-;[( 1
‘-’. vx~)* ds??.Ex p

s

(50)

Finally consider the waveguide with a perfectly con-

(51)

(52)

and adopting real-type inner product it can be shown,
from Maxwell’s equations and (42), that the adjoint fields

may be written as

E(x,y,z) = E(x,y)d’= = (~ – 2Ez)d’=

P(x,y,z) = %(x,y)d’= = ( – tit + 2Hz)#. (53)

For this specific problem, the relation in (49) is again

satisfied. By considering the boundary condition, & x ~=

~=0, as an essential one and using (23), (44), (45), (48),

and (49) one then has the stationary formula for the
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propagation constant k:

{

.—
k= ~~,[6J@(X,J+:% (X,~)-@ =(X,~)o~-~(X,~)

+j=(X,y)- V, X ~(X,~) +j~(X,y)- V, X @(X,y) ] dS
1

// 2 Et X ~t.idS.
s’

(54)

The symbol V, in (54) represents the “transverse” part of

the del operator V, i.e., Vt = V – 2 i3/~z. N~te that_ (54)

reduces to the special one in [9] whenever ~ and ~ are

scalar.

Stationary formulas for other quantities, such as the
impedance of an antenna and the echo area of a scatterer,

etc., [7], [9], can also be derived from this variational

principle.

VII. CONCLUSIONS

The general variational (or stationary) principle has

been established for dealing with the non-self-adjoint

problem in an electromagnetic system with various

boundary conditions. This principle has been interpreted

physically in terms of generalized reactions, time-average

stored energy, and reactive powers. It has been shown that

the true field of a non-self-adjoint system (or a self-adjoint

system) is the one that makes the sum of the generalized

reactions (or the sum of the reactive powers) a stationary

value. In this sense, this general variational principle is

indeed an extension of the least action principle in

physics. The non-self-adjoint variational expressions have

been found automatically leading to the self-adjoint ones

discussed by the previous investigators. The general for-

mulation is proved very useful in deriving the variational

expressions for fields and eigenvalues computation.
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