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The Variational Principle for Non-Self-Adjoint
Electromagnetic Problems

CHUN HSIUNG CHEN anp CHUEN-DER LIEN

Abstract—A systematic and mntuitive procedure is proposed to derive
the variational (or stationary) principle for non-self-adjoint electromag-
netic problems with various boundary conditions. Several physical interpre-
tations of this principle in terms of generalized reactions, time-average
stored energy, and reactive powers, respectively, are discussed in detail.
This general variational principle which makes the generalized reactions a
stationary value is actually an extension of the least action principle in
physics. The applications of the principle to establish the variational
expressions for a waveguide, a cavity resonator, and a lossy one-dimen-
sional inhomogeneous slab are presented. ‘

I. INTRODUCTION

LMOST ALL physical problems can be formulated
mathematically in terms of differential equations,
integral equations, or variational equations [1], [2]. Before
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The authors are with the Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan, Republic of China.

the advent of computer, the applicability of the varia-
tional formulation is somewhat limited, because its solu-
tion eventually has to go back to that of solving the
differential equations. But in recent years, the variational
formulation has received much attention for three rea-
sons, The primary reason is that we have computers
capable of solving the variational equations directly and
practically, using the direct methods [2], [3], such as Ritz
method and finite-element method. The second reason is
that the variational formulation itself also permits a physi-
cal interpretation, thus, it may supply another picture to a
physical problem. The third reason is that the variational
formulation can be used not only for computing the field
but also for establishing the stationary formula of a quan-
tity such as the eigenvalue. Of course the variational
formulation is not suitable in discussing the problem for
which the functional does not exist [4]. Actually, only

0018-9480/80,/0800-0878500.75 ©1980 IEEE
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when the functional exists can the variational formulation
have physical and mathematical significance. ,

In physics, both differential formulation (Newton’s law)
and variational formulation (the principle of least action)
have been utilized extensively in studying a mechanical
system. But the variational formulation of an electromag-
netic system is still not well-established in comparison
with the differential formulation (Maxwell’s equations) of
the same problem. With a few exceptions [4]-[7], most
investigations on the variational formulation are mainly
concerned with the self-adjoint electromagnetic problems.
The purpose of this paper is to establish a general varia-
tional principle (formulation) for dealing with a non-self-
adjoint electromagnetic system and then to present a
physical interpretation of this novel principle.

In the field of electromagnetism, some derivations and
applications of the variational formulation have been re-
ported recently [8]-[23]. Rumsey [8] and Harrington [9]
have created the reaction concept for deriving the
stationary expressions in an isotropic medium. Konrad
[10] has investigated the variational expressions in an
anisotropic medium, while Morishita and Kumagai [11],
[12] have studied the same problem, using the principle of
least action. There are many authors who have derived the
variational expressions for each specific problem
[13]-[23]. But all these investigations are mainly con-
cerned with the self-adjoint problems (with respect to
either real- or complex-type inner product). Although a
few authors [4], [5], [24] have proposed a scalar theory for
handling some specific non-self-adjoint problems, the the-
ory is still not powerful enough in dealing with the general
problems for a vector field. While the variational expres-
sions for a non-self-adjoint vector field have been ob-
tained by means of “transpose operator and field” [7], it is
still worthwhile to have an intuitive derivation and physi-
cal insight of these expressions on the other hand. More-
over, only boundary conditions of Dirichlet and/or Neu-
mann types are considered by the previous investigations.
There is still little information concerning more general
types of boundary conditions.

In this paper, a systematic and intuitive procedure is
suggested to derive the variational expressions for a non-
self-adjoint electromagnetic system. The generalized reac-
tion concept is introduced to interpret the general varia-
tional principle for this electromagnetic system. The prin-
ciple is then applied to the problems of establishing the
variational expressions for a waveguide, a cavity resona-
tor, and a lossy one-dimensional inhomogeneous slab.

II. VARIATIONAL FORMULATION OF A
NON-SELF-ADJOINT PROBLEM
The variational solution of a non-self-adjoint problem
Lf=s ¢))
will be summarized in this section. Although only the

electromagnetic field problem is considered in this study,
the theory is, in general, applicable to any non-self-adjoint

problem in physics and mathematics. In (1), L is a non-

self-adjoint linear operator for describing a physical or
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mathematical problem, f is the field (unknown function)
to be determined, and s is a given (known) source func-
tion.

A method of solving the original non-self-adjoint prob-
lem (1) is to introduce an auxiliary problem, the adjoint
problem [4]-[6], [24], {25] as follows:

L= @
where L“ is the adjoint operator of L, f* is another
unknown function (the adjoint field) to be determined,
and s is another known source function. .

Both real- and complex-type inner products [25] will be
considered in this study. The latter is accepted conven-
tionally by many authors and is easily interpreted as the
complex power physically, however, the former is more
convenient in mathematical manipulation [26]. Either
real- or complex-type inner product of two vectors u and
w is defined as a scalar {u,w> such that

Cuyw) ={w,u)?
oy + 0y1ty, W) = 0fuy, w) + a5 uy, W) (3a)
where u;,u, are vectors and o,,0, are scalars. For the
complex-type inner product the superscript p should be

interpreted as “complex conjugate*” so that

—_— S —
of =a}, i=1,2

Cuw) = (w,u)? =(w,up* (3b)
while for the real-type inner product p should represent
“no operation” and should be removed and interpreted as

o?=0, i=1,2

Lu,wd={w,ud? ={w,u)d. (3¢)
The symbol p will always have the above interpretation
throughout this study.

We now.conduct a systematic and intuitive derivation
of the variational formulation for solving both original
and adjoint problems, equations (1) and (2), simulta-
neously. The idea is to express the left-hand side of the
equation

Of, Lf — s> +{LYf*~s% 8f>=0 4
as the first variation 8/ of some functional I [2], where §f
and 8f° are the variations of f and f*, respectively. Then it
can be shown that the problem of solving f and f* simulta-
neously from (1) and (2) is completely equivalent to that
of determining the stationary functions (both f and f*)
from the following variational equation:
8I(f, f*)=0
I(£ f) =S L > =<2, > =% 50 (5)

Note that for the problems defined by differential oper-
ators L and L® with their boundary conditions B(f)=0
and B“(f?)=0 regarded as essential ones, the stationary
functions f and f* of (5) should also be subject to the
constraints B(f)=0 and B?(f?)=0, respectively. How-
ever, if these boundary conditions are regarded as natural
ones, then some modifications should be made on (4) and
(5), as demonstrated in Section III, with the stationary
functions f and f° subject to- no constraints on the
boundary.
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Note also that with the symbol {, > defined by (3), the
variational formulations for real- and complex-type inner
products can both be written in the same form as indi-
cated by (5). The expression in (5) is identical to that of
the stationary principle [4], [24] and that of another de-
rivation [5]. The expression (5), of course, includes that
adopted in the previous investigation of the self-adjoint
problem [27].

It seems that both f (the desired field) and f* (the
adjoint or auxiliary field) have to be solved simulta-
neously in the variational problem (5). However, the pro-
cess of determining both f and f* can actually be decou-
pled, as explained later, when Rayleigh—Ritz or finite
element method is employed in the solution.

Let us express the solution in the form

N
f= 21 C,,

N
= 2 Cloy ©)

where ¢, and ¢¢ are known functions, and C, and C, are
constants to be determined. Note that both ¢, and ¢,/ may
or may not form the bases of the domains of L and L¢,
respectively, however they should be linearly independent
and should form the complete sets as N approaches infin-
ity. By substituting (6) into (5) or (4) and adjusting C, and
C? such that 8I(f,f*)=0, one obtains two decoupled
systems as follows:

N
2 <¢:t’ L¢n>Cn = <¢r:’ S>

n=1

N
21<¢’m> La¢:>C:=<¢m’sa>> m=12,---,N. (7)
n—

The positive integer N in (6) and (7) may be finite or
infinite if an approximate or exact solution is to be
determined. The fact that C, and C;’ are decoupled in (7)
has greatly simplified the process of determining the
stationary functions f and f* from (5).

The discrete systems (7) from the Ritz method are
identical, in form, to those from the moment (or Pet-
rov—Galerkin’s) method [26] of simultaneously solving the
original and adjoint problems (1) and (2). Since there is a
basic difference or mathematical distinction between these
two methods [4], the above statement is meaningful only
when both methods can make sense. If the functions ¢,
and ¢ are selected from the eigenfunctions of L and L“,
respectively, then the systems (7) will reduce to the con-
ventional ones derived from the method of eigenfunction
expansion [25]. If f* in (6) is expanded into a series of ¢,
instead of ¢, then the resultant systems obtained will be
identical to those from the Galerkin’s (or Bubnov—Galer-
kin’s) method.

The introduction of the auxiliary problem (2) for sup-
plementing the original problem (1) has an interesting
physical interpretation as follows:

sy =S4 Lf > =LY f)=<{s% 1. (8)

This is the generalized reciprocity theorem which states
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that the generalized reaction of the adjoint field f¢ on the
source s of the original problem is identical to that of the
original field f on the source s¢ of the adjoint problem.
The term < f%, s>, for example, may be interpreted as a
generalized reaction since it can be reduced to the conven-
tional reaction [8] if the real-type inner product is em-
ployed.

The general reciprocity theorem (8), in the case of a
self-adjoint problem using the real-type inner product, has
an important result as follows. By setting f=f,, s=s,,
fé=f,, s®=s,, one then has the conventional reciprocity
theorem [28] of relating the reactions between two diffe-
rent problems: (f, s,) and (f,, ), i.e., {fy, 5,0 ={fs, 5)-

III. VARIATIONAL PRINCIPLE FOR

ELECTROMAGNETIC SYSTEM

The variational principle for dealing with electromag-
netic field problems will be investigated in this section.
This study is mainly concerned with the solution of the
non-self-adjoint electromagnetic problem (the original
problem) described by the equations

~VYXE=jop-H+M

VX H=jwe-E+J,

B(E,H)=0, ©)

where V is a closed region bounded by the closed surface
S, Fig. 1. In (9), E and H are the electric and magnetic
fields to be determined, J and M are the known source
distributions (electric and magnetic current densities)
within ¥, € and p are the permittivity and permeability
tensors (dyadics) of the medium contained in V, and
B(E,H)=0 is the required boundary condition on the
surface S. The anisotropic medium in ¥ may be lossy and
inhomogeneous, thus, the tensors ¢ and 1 are in general
complex quantities and functions of the position. Only
time-harmonic variation of the form ¢/’ will be discussed

in this study.
As before, an auxiliary adjoint problem

— VX E®=jop%Ho+ M*
a,Ea_*_J_a’

in¥V

on S

VX He=jwe inVy
B*(E*,H*)=0, (10)

is introduced to supplement the original problem (9). In
a0, E E* and H® are the unknown adjoint fields, J J* and
M*® are known source distributions, and B4(E®, H%)=0 is
the adjoint boundary condition. Note that the condition
B*(E® H*)=0 in (10) should be chosen according to
B(E,H)=0 in (9), and the dyadics ¢ and p° should
be equal to (e7)? and (u7)?, respectively, in order to make
(10) the adjoint of (9). The symbol 7" denotes “transpose™
and p again denotes no operation or complex conjugate*
as discussed in (3).

The inner product, for studying an electromagnetic
system, of vectors U and W is defined as

on S

<z7,v7>=fV(7P-iV‘dV. (11)
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=32

sources
fields
medium

Fig. 1. Geometry of non-self-adjoint electromagnetic problem (original

problem).

Two kinds of boundary conditions are discussed, i.e.,

B(E)=AXE—-%=0

BYE®)=AXE*—5°=0, onS (12)
and
B(E,H)=Hx#i—joa-E—-B=0
B{E" H)=H*xhA—joa®"E°—B°=0, onS.
(13)

In (12) and (13), B,=0 and B?=0, i=1, 2, are the
boundary conditions associated with the original and
adjoint problems (9) and (10), respectively, 7 is the unit
outward normal vector to the surface S (Flg 0, ¥, 7% B,
B¢ are given constant vectors, and «, a are given con-
stant dyadics. To make the problem (10) the adjoint
of (9), a” should also be chosen such that o®=(a”)’.

Physically, the vectors 8, 8% and ¥, ¥° may be interpre-
ted as electric- and magnetic-surface currents, and the
dyadic « as the permittivity of an infinitesimally thin layer
over the surface S. In the expressions for the variational
principles given by (19)-(21), (22)-(24), and those for the
generalized reactions given by (25), these constants 8, 8¢,
¥, ¥, and a have actually served as sheets of additional
sources and sheet of extra anisotropic material at the
boundary S.

The variational equivalent of (9) and (10) may be writ-
ten in terms of (E,E®), (H,H®), or (E,H,E° H?%) and is
named E-, H-, or E, H- formulation, respectively.

A. E-Formulation

First consider the variational formulation in terms of E

and E°. To this end, the unknowns H and H? in the
original and adjoint problems (9) and (10) are considered
as functions of £ and E*, respectively, i.e.,

H(E)=—T7 (VXE+M)/jo
HYE) = — o (VX Eo+ M%) /jo. (14)
Then H and H° in (9) and (10) may be eliminated to

obtain the wave equations as follows:

E=-vx(n ]-VxE) Ye-E
nV

—-JwJ+V><(__1-1\7),
B(E,H(E))=0, (15)

on S
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L“E“E—Vx(?‘;l-VxE")+w2?"-E"
=j/*+Vx (M%), iV

B%(E°,H(E®))=0, onS. (16)

Here we have the electric field E to be determined from
the original problem (15) and the adjoint electric field E¢
to be determined from the adjoint problem (16).

To absorb the boundary conditions into the variational
formulation as well as to simplify the derivation, a symbol
A(S) is introduced for converting volume integral into
surface integral and vice versa,

fVF(f)A(S)dV= fs F(F)dS

A(S)*=A(S). (17)
In (17), F is a scalar function of the position 7 so it may
be replaced by any component of a vector or a tensor.
To seek for the variational formulation of (15) and (16)
with boundary conditions (13), we now start from the
equation of the form

(OE* LE—jul~Vx(p -M))

+(LUE~ joT =V x (e Me), 6E
+(8E°, DB(E, H(E))A(S))>

+{D*B°(E*, H(E*))A(S), 8E>=0  (18)
and try to reduce the left-hand side of (18) into the first
variation 87 of some functional /. Note that we have also
included the boundary conditions B= B,=0 and B%=
=0, (13), as natural ones into the derivation. The con-
stants D and D¢ are chosen (D= D“=jw) so that the
dimension in (18) can be matched and the left-hand side
of (18) can be expressed as the desired form 81.

Note that (18) can also be applied to the problems (15)
and (16) with the boundary conditions (12), B=B,=0
and B°= B"—O regarded as essential ones. In this case,
the last two terms in the left-hand side of (18) are then
dropped automatically.

For the problems (15) and (16) with the same boundary
conditions (12), B =0 and B°=B?=0, regarded as
natural ones, one should start from (18) with 6E and 8E*
in the surface integral terms replaced by &( jH) and
0(jH®), and D=D"= —

By a straightforward manipulation it can be shown,
from (18), that the mathematical equivalent of solving (15)
and (16) is the variational problem as follows:

8I°(E,E*)=0 (19)
where the functional I7°(E, E“) takes the form
I;\(E,E*)=1I5,,(E,E)
—oH(E?), (AX E—=7)A(S))
—(AXE*=7*)A(S),joH(E)y  (20a)
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I31:(E, E%) = —*GHY(E?), yJH(E))
+ 0N E®, €-E>—(E® juJ >—{jw* E> (20b)
for the conditions (12), or the form
Ig(E,E%) = —oXGHY(E*), n7H(E))
+0XE, (e + a A(S))-ED
~{E*, jo(J + BA(S))>

—ju( T+ BA(S)), B @1
for the conditions (13). In (20) and (21), H(E) is actually
a function of E, H*(E“) a function of E® as given by
(14), and A(S) is the symbol defined by (17).

Precisely, the variational principle states that the prob-
lem of solving E and E° simultaneously from (15) and
(16) with (12) (or (13)) is completely equivalent to that of
determining the stationary functions E and E* from the
variational problem: 8¢
and E¢ unrestricted on the boundary surface S. In this
case the conditions (12) (or (13)) are just the natural
boundary conditions of the variational problem (19).
Alternatively, we may solve the variational problem (19)
with the trial functions E and E“ subject to the same
constraints (12) B;=B¢=0. With these constraints, the
functional Iz, then reduces to I,z and the same condi-
tions (12) are now the essential boundary conditions of
the variational problem.

B. H-Formulation

The formulas for H-formulation, which may be ob-
tained from those for E-formulation by means of duality
transformauon E—jH, jH—E, €, h—>€, — JI—>M, M

—jJ, etc., (or that given by Harrington [9]) are omitted
in this investigation.

C. E, H-Formulation

Instead of treating H as a function of E and H® as a
function of E® as did in Section III-4, we may also regard
E,H,E% H° as the unrelated unknown fields to be de-
termmed from (9) and (10). In this manner, we then have
the equivalent variational formulation of (9) and (10) in
terms of E,H,E° H®

dI“"(E,H,E*, H*)=0
where the functional />*(E, H,E®,H°) is

(22)

IgHE,H,E*, H*)=I3!'(E,H,E*, H")
—jwH®, (AX E—Y)A(S))
—{(AX E*=7°)A(S), jwH )
Ih(E, H, E®, H*)=w*GH®, pjH>+wXE® €-E>
+{oH VXE+M)
+{(VXE"+ M* juH)

—(E%jJ > ={jeJ Ey  (23)

=0, I°=Ig, (or I§,), with both E
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for the conditions (12), or

Ig(E,H,E*, H*)=w*jH", pjH)
+wXE( e+ aA(S))E)
+wH* VX E+M>
+{(VXE°+M* joH)
—CEju(J + BA(S))>
— (I + B°A(S)), E

for the conditions (13).

The variational principle again states that the solutions
(E.H) of (9) and (E%, H?) of (10) with (12) (or (13)) are
also the solutions (E,H,E® H®) of the variational prob-
lem: 81%*=0, I**=1Ig} (or I3)) with the trial functions
(E.H,E°,H®) completely arbitrary on the boundary S,
and vice versa. This is the case of regarding (12) (or (13))
as the natural boundary conditions. For the case of re-
garding the same conditions (12) as the essential ones, the
variational problem should be solved from: 87%%=0, 1"
=Ig}. with the trial functions (E, H,E* H®) subject to
the constraints (12).

Note that by regarding H and H in (23) and (24) as
functions of £ and E“, respectively, as given by (14), one
may show that the functlonals in (23) and (24) for E,H-
formulation can be reduced to those in (20) and (21) for
E-formulation, respectively. The reduction of the un-
knowns, from (E,H,E® H®) to (E, E®), does not raise the
order of the derivatives in the resultant expressions, since
(20), (21) and (23), (24) all contain the derivatives of at
most order one. In this sense, the formulas of E-formula-
tion are more attractive than those of E, H-formulation.

Note also that with (jH) as well as (jH?) treated as a
single quantity in the derivation, the variational formula-
tions for real- and complex-type inner products can both
be expressed in the same form as given by (19)-(21) and
(22)-(24).

(24

IV. TaE GENERALIZED REACTION CONCEPT

We now present physical interpretation of the general
variational principle described by (19)—(21) and (22)-(24).
For this purpose, we define the “generalized reactions” as

(fe s =i{ GH®, M+ MA(S)) —<E%, j[ T+ BA(S) > }
s, > =H{ MO+ MEA(S), jH » = [ T4+ BA(S) | B )
(fo s(f)>=j{<GH® M(E,H)+M,(E,H)A(S)>

—(E* jIT(E,H)+B(E.H)AS)]>}
() > =J{<KM(E=, H)+ M2(E*, H*)A(S), jH
HYAS].E>}.  (29)
Then it can be shown that the functionals 7¢(E, E?) in

(20), (21) and I°*(E,H,E* H?) in (23), (24) can be re-
written in terms of these generalized reactions as follows:

I(f, f*) =je[ S s(£)) =<4 fr =< f% 0] (26)

_<j[ja(E_a, I?a) + Ea(E_a’



CHEN AND LIEN: NON-SELF-ADJOINT ELECTROMAGNETIC PROBLEMS

Note that (26) is actually an extension of (5) if one defines
a field dependent source such that s(f)=Lf in (5).

In (25), (J,M) and (J% M?) are the true sources of the
original and adjoint problems, (9) and (10), respectively.
The fields (E,H) and (E? H?) are the trial fields used in
the original and adjoint systems (9) and (10). The field-de-
pendent sources

J(E,H)=VxH-joeE

M(EH)=-VXE-jop-H 27
are the ones to support the trial fields (E, H), and
fa(E—a’ ﬁa) =Vx H® ___jw?a_E_a
M*(E*,H*)= -V X E*—jo p*-H* (28)

are those to support the trial fields (E Y H “)

The electric surface currents 8, B4, ,B(E H), ,B“(E «H “)
and magnetic surface currents M M; M® M, (E H),
M, “(E 4, H?) in (25) are chosen accordmg to the problems.
For the problem with the boundary conditions B, = Bf =
0, (12), the currents are chosen such that

B=PB"=B(E,H)=B(E*,H")=0
M(E,H)=hxE
(%, H7) = X B (29)
and M,=AXE, M®=AX E® or M,=¥, M®=7“ depend-
ing on whether the conditions (12) are regarded as essen-
tial or natural ones. For the problem with the natural

boundary conditions B,= B§ =0, (13), the currents should
be chosen such that

BYE*H%)=—jwa®™E*+ H®X#
and B, B° are defined by (13).

The generalized reactions in (26) should be calculated
from (25), (27)—(30) with J,M,J° M* denoting the true
sources and E, H,E® H® denoting the trial fields.

The expressions in (25)—(30) are mainly written for the
functionals I%*(E,H,E® H®) of E,H-formulation. The
same expressions may be applied to the functionals
I "(E E®) of E-formulation if one regards H as a function
of E and H*® as a function of E® as given by (14). Then
M(E,H) and M%(E° H H®) automatically reduce to the
true sources M and M?, respectively. Note that (25) and
(26) are invariant under duality transformation, thus, they
are also applicable to the expressions for H-formulation.

The term < f%, s> may be interpreted as the “generalized
reaction” of (E _",17 ), the trial fields in the adjoint system
(10), on (J+ BA(S), M+ MA(S)), the sources of the
original problem (9). The term {f*, s(f)) is the reaction
of the trial fields (E“,H®) on the sources (J(E, H)+ B(E,
H)A(S), M(E,H)+ M(E,H)A(S)) to support the trial
fields (E,H). Similar interpretations may be applied to
<s% f) and s, f)-

(30)
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Note that we have included surface sources (_urrents)
,B, ,8“ M M - and surface materials a, o® in the
definition of the reactions. The generalized reactions (25)
reduce to the conventional ones proposed by Rumsey [8]
when the real-type inner product i is adopted in formula-
tion and the surface quantities a, o, B, 8% 1\73,
M?,- - are removed from the above equations.

The general variational principle described by (22)-(24)
(or (199—(21)) now has a physical interpretation as
follows: the true solutions (fields) of the original and
adjoint problems (9) and (10) (or (15) and (16)) are just
the ones that give the sum of the generalized reactions in
(26) a stationary value. L

The trial fields (£, H) and (E°, H?) used in the original
and adjoint systems possess the following symmetric prop-

erty:

Cfe s(f)> =<5 (). f)- (31)
In words, the reaction of the trial fields (E%, H?) (in the
adjoint system) on the equivalent sources to produce the
trial fields (E, H) (in the original system) is always equal
to that of (E, H) on the equivalent sources to produce
(E®, H%).

Note that for the problems (9) and (10) with the
boundary conditions (12) (or (13)), the reaction {f*, s(f),
is equal to {f%, s), and {s°(f*), f), is equal to {s% f>,
whenever the trial fields are equal to the true fields. The
subscript ¢ in ¢ , ), indicates that the true fields and
sources of (9) and (10) are utilized in the expressions for
the reactions. One consequence is that the true fields and
sources of the original and adjoint problems, (9) and (10),
should be connected by the relation

S 80 =L5% o (32)
This is the generalized reciprocity theorem [29] which
states that the reaction of the true fields of the adjoint
system (10) on the true sources of the original system (9)
should be equal to that of the true fields of (9) on the true
sources of (10). Another consequence is that the func-
tional I in (26) has a stationary value equal to — jw{f%, s),
(= —je(s®, £3,).

It remains to consider the important special case of a
self-adjoint problem such that

(eo, 1% a)=(¢c, p, ). (33)
The dyadics in (33) are then symmetric or Hermitian
depending on whether real- or complex-type inner prod-

uct is adopted. For this case, there are many choices for
the adjoint quantities. A convenient one is that

_____ (34)
Then the functional I in (26) can be written in terms of
self-reactions as follows:

I(f)=jo[{f; s()> =<, /7 =<fisD ] (35)

For the self-adjoint problem discussed by the complex-
type inner product, the expressions in (20) and (21) then
automatically reduce to the ones studied by the previous
investigator [10]. In particular, the variational expression
If,p in (20) has an interesting physical interpretation
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when it is rewritten in the following form:
1 — — == — — — _— — —
I51p(E)=0[1/XE, ¢-Ey~1/XH(E), p-H(E))]

20
+(-Im{T,EY)  (36)

where Im means the imaginary part of a complex quan-
tity. The first and second terms in the right-hand side of
(36) may be interpreted as the time-average electric and
magnetic energy stored within the region ¥V, and the third
term as the reactive power supplied by the electric source
J. The variational principle for an electromagnetic system
then states that the true solution E of the variational
problem 8I5,,=0 should be the one that makes the dif-
ference in the energy, electric minus magnetic, of the
system plus the (electric) source reactive power a
stationary value. The same interpretation may be apphed
to the expression in (21) if the surface quantmes « and ,8
are properly included in (36) (i.e., e—>e+al(S) and J»J
+ BA(S)).

Using the complex-type inner product to describe a
self-adjoint problem it can also be shown that the self-re-
actions <f, s(f)> and {s(f), f) are all imaginary, since

Cos(f) =Cs(f), fo = =S s()*. (37)

This implies that the self-reaction such as {f,s)>, has no
real part. Physically, the imaginary part of {f,s), is just
the reactive power delivered by the true magnetic source
M+ M, LA(S) minus that delivered by the true electric
source J + BA(S). These reactive powers are exactly the
stationary value of the functional I/(—jw).

Note that the expression in (35) is actually an alterna-
tive version of that given by (36). The sum of the reactive
powers in (35) are, therefore, related to the difference of
the average stored energy plus the (electric) source reac-
tive power given by (36).

The electromagnetic variational (or stationary) principle
described by 8/ =0 (where [ is defined by (20), (21), (23),
(24), (26), (35), and (36)) may be considered as an exten-
sion of the principle of least action in physics. The princi-
ple now states that the true solution of a self-adjoint (or
non-self-adjoint) electromagnetic system is just the one
that makes the sum of the reactive powers in (35) or (36)
(or the sum of the generalized reactions in (26)) a
stationary value.

Another choice of the adjoint quantities for a self-
adjoint problem is worthy of further investigation. If the
self-adjoint problem is discussed by the real-type inner
product, then one may use the alternative choice of the
form

The generalized reactions defmed by (25) then automati-
cally reduce to the ones originally proposed by Rumsey
[8], [9]. The generalized reciprocity theorem (32) also
reduces to the conventional one [9]

o s10e={Frs 5204 (39)
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ZI=Zx

Fig. 2. A section of infinite uniform guide for establishing two-dimen-
sional formulation.

for relating two different problems (J,M,,E,,H)) and

(Jp My, E,, H,) in the same environment.

V. REDUCTION TO TwO-DIMENSIONAL PROBLEMS

We now apply the three-dimensional variational expres-
sions in Sections III and IV to the derivation of the
two-dimensional ones for an infinite uniform guide (Fig.
2). Although these expressions can also be obtained di-
rectly from the two-dimensional governing differential
equations, it is interesting to establish the same results
with a different approach.

Consider a section of uniform guide, from z=2z, to
z=1z,, to form a three-dimensional region (V of Fig. 1)
with the boundary § consisting of the surface S’ plus two
cross-sectional planes S, and §, at z=2z, and z=2z,,
respectively, as shown in Fig. 2. Note that the two-dimen-
sional problem in Fig. 2 should only include §’ as its
boundary, consequently, the starting equation (18) for this
purpose should not contain the surface integral terms over
S, and S,.

Let us consider the variational expressions for the cases

[E_(xsy’z)’ﬁ(xay?z)’ﬁ—(x’y?ZL ‘7(x7yaz)]
=[E(xy), H(x,y),B(x.9).7(x.y) [e 7 (40)
[E“(x.9,2), H(x,9,2),B°(x.9,2),7(x.,2) ]

=[ E%(x.9), H(x,9),B°(x.y), 7(x.y) e 7**. (41)
Note that only under the condition

(jkoY = —jk (42)
it is possible to get a useful expression such as (43). By
substituting (40) and (41) into (18) with the condition (42)
it is discovered that the left-hand side of (18) (i.e., the
volume integral plus the surface integral over §’) may be
written as

(z,—2,)8K =0 (43)

where K is a functional K(E(x,y), I?(x,y), E(x,y),
H?4(x,y)) independent of z.

The two-dimensional functional K is related to the
three-dimensional one I defined by (20), (21), (23), (24),
(26), (35), or (36) with the fields given by (40)-(42), the
boundary conditions on S’ specified by (12) or (13), and
some suitable boundary conditions, for example (12) or
(13), specified on S, and §,. The relation is

K=dl/dz, (44)
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i.e., the two-dimensional functional X can be obtained
from the three-dimensional one 7 by performing the in-
tegration with respect to x, y, and z to get I first and then
taking the derivative of I with respect to z,. Actually, this
functional K can directly be obtained from 7 by simply
removing the integration with respect to z.
In conclusion, we have the two-dimensional formula-
tion for a guide
éK=0
since (z,— z;) in (43) is arbitrary.
By using the complex-type inner product to discuss a
self-adjoint problem and choosing the adjoint quantities
according to (34), it is found that the condition (42) is
fulfilled automatically. Then one can yield, from (44), the

same results investigated by the previous authors [7],
[11]-[15].

VL

Examples of deriving the variational expressions for
fields computation and establishing the stationary for-
mulas for certain physical quantities, such as the eigenval-
ues, will be included to demonstrate the applications of
the variational principle.

Consider first the normal incidence propagation prob-
lem for an isotropic inhomogeneous dielectric slab [16].
From the region 1 (x<0) of homogeneous medium
( B, €o€y1), @ uniform plane wave is normally incident upon
the region 2 (0<x<a) of inhomogeneous medium
(1o, €9€2(x)), and is then transmitted to the region 3 (x >a)
of homogeneous medium ( pg, €5¢5). By means of the con-
tinuity conditions for tangential electric and magnetic
fields over the boundaries at x=0 and x=a, one can
obtain the constants associated with the problem as
follows:

45)

APPLICATIONS OF THE VARIATIONAL PRINCIPLE

a (0)= ——yp 0)=—
(0) jw’uoyy B(0) ™
— k3 An —
a(@)=——y  B(a)=0. (46)
JW o

For computational simplicity by adopting the real-type
inner product and choosing (34) one has, from (21), the
variational expression for computing the electric field

E(=54(x))
~mol(@)= [ “[W(x)? = Key(x)9(x) ] dx

+jksy*(a) + jkp*(0) — jak §(0).  (47)
The constants ¢ and g, are the permittivity and permea-
bility of free space; €, €,(x), and €, are the relative
permittivities of region 1, 2, and 3; and k,, k,, and k; are
the propagation constants of free space, region 1 and
region 3, respectively.

For the functional I(f,f%) in (26) (or (5)) which contains
an unknown physical parameter such as resonance
frequency, cutoff frequency, or propagation constant, the
stationary formula for that parameter may be obtained
from the equation
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I(£f*)=1(£,17) (48)
where f,f* are the trial fields and f,f? are the true fields of

the original and adjoint problems. Note that the func-
tional (26) for the true fields is zero, i.e.,

1(f.f7)=0 (49)
whenever the true sources J, M, J% M® and the surface
sources ,E, B_“, AZ, ]\_l;“ are all zero.

It remains to apply (48) and (49) to the problems of
establishing the stationary formulas for a cavity resonator
and a waveguide.

Consider the resonator which has a perfectly conduct-
ing wall S to enclose a region ¥ of Hermitian medium.
The complex type inner product is adopted in formula-
tion. Then the problem is self-adjoint. The adjoint quanti-
ties are chosen according to (34). Note that the true
sources (J,M) are zero within V so that the relation in
(49) can be satisfied. By considering the boundary condi-
tion, AX E(S)=¥=0, as a natural one and using (14),
(20), (34), (48), and (49), one then has the stationary
formula for resonance frequency w [15] of the form

w2={fVXE*-7_1-VxEdV
1 4
—Lﬂ[Ex(?_l-Vxﬁ)*]dS

..fsﬁ.[g*x(j—‘.vxg)]ds}/fVE*-?E‘dV.
(50)

Finally consider the waveguide with a perfectly con-
ducting wall S’ to enclose the anisotropic medium

€= e(x,y)=¢ KR+ €, XV +¢,, X7
+e, yX+e, )y +e, V7
—€,i8—¢, Y +e if

p= p(xy)=p X%+ p, 2 +p, 22
+ YR+ Y+, VE

— M EX =, 20 + i, 22 (51)
With the fields expressed as
E(x,y,2)=E(x,p)e = (E,+ ZE,)e %
H(x,y,2)=H(x,y)e /% = (I-I—, + z‘Hz)e'j"’ (52)

and adopting real-type inner product it can be shown,
from Maxwell’s equations and (42), that the adjoint fields
may be written as

E%(x,y,z)=E%x,y)e/* = (E‘, - EEZ)ejk‘

H(x,p,z)=H%(x,p)e’* =(— H,+ zH,)e*. (53)
For this specific problem, the relation in (49) is again
satisfied. By considering the boundary condition, A X E=

¥=0, as an essential one and using (23), (44), (45), (48),
and (49) one then has the stationary formula for the



886

propagation constant k:

ke { [ [0B () €-Ex) =l () 5 ()

3

+j]?“(x,y)- Vt X E(xxy) +jﬁ(x’Y)' Vt X E_a(x’y)] dS}

(54)

The symbol V, in (54) represents the “transverse” part of
the del operator V, i, V,=V—7Z 0/9z. Note that (54)
reduces to the special one in [9] whenever ¢ and p are
scalar.

Stationary formulas for other quantities, such as the
impedance of an antenna and the echo area of a scatterer,
etc., [7], [9], can also be derived from this variational
principle.

/ 2| E,xHqzdS.
5

VII.

The general variational (or stationary) principle has
been established for dealing with the non-self-adjoint
problem in an electromagnetic system with various
boundary conditions. This principle has been interpreted
physically in terms of generalized reactions, time-average
stored energy, and reactive powers. It has been shown that
the true field of a non-self-adjoint system (or a self-adjoint
system) is the one that makes the sum of the generalized
reactions (or the sum of the reactive powers) a stationary
value. In this sense, this general variational principle is
indeed an extension of the least action principle in
physics. The non-self-adjoint variational expressions have
been found automatically leading to the self-adjoint ones
discussed by the previous investigators. The general for-
mulation is proved very useful in deriving the variational
expressions for fields and eigenvalues computation.

CONCLUSIONS
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